
Previous results Classical RACs QRACs

Random Access Codes

Laura Mančinska & Māris Ozols
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Random access codes (RAC)

n p7→ m random access code
Alice encodes n bits into m and sends them to Bob (n > m).
Bob must be able to restore any of the n initial bits with
probability ≥ p.

We will look at two kinds of RACs
Classical RAC - Alice encodes n classical bits into 1 classical
bit.
QRAC - Alice encodes n classical bits into 1 qubit. After
recovery of one bit the quantum state collapses and other bits
may be lost.
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Bloch sphere

As Bob receives only one qubit we can use Bloch sphere to visualize
the states in which Alice encodes different classical bit strings.

Pr[|ψ〉 collapses to |ϕ0〉] = cos2 θ
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Previous results on RACs

Pure strategies
Some specific QRACs are known for the case when only pure
strategies are used. That means:

Alice prepares pure state.
Bob measures using projective measurements (no POVMs).
Shared randomness is not allowed.



Previous results Classical RACs QRACs

Known QRACs

2 p7→ 1 code

There exists 2 p7→ 1 code where p = 1
2 + 1

2
√

2 ≈ 0.85.
This code is optimal. [quant-ph/9804043]
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Known QRACs

3 p7→ 1 code

There exists 3 p7→ 1 code where p = 1
2 + 1

2
√

3 ≈ 0.79.
This code is optimal. [I.L. Chuang]
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Known QRACs

4 p7→ 1 code

There does not exist 4 p7→ 1 for p > 1
2 .

Main idea - it is not possible to cut the surface of a sphere into 16
parts with 4 planes. [quant-ph/0604061]
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What can we do now?

Introduce all kinds of randomness
(shared randomness will be the most useful).
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RACs with shared randomness

Yao’s principle

min
µ

max
D

Prµ[D(x) = f (x)] = max
A

min
x

Pr[A(x) = f (x)]

f - some function we want to compute.
Prµ[D(x) = f (x)] - probability of success when arguments of
deterministic algorithm D are distributed according to µ.
Pr[A(x) = f (x)] - probability of success of probabilistic
algorithm A for argument x .
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How to obtain upper and lower bounds?

Upper bound
If we find some distribution µ0 that seems to be “hard” for all
deterministic algorithms and show that

max
D

Prµ0 [D(x) = f (x)] = p,

then according to Yao’s principle we can upper bound the success
probability of probabilistic algorithms by p.

Lower bound
If we have a deterministic RAC D0 for which
Prµ0 [D0(x) = f (x)] = p, then we can transform it into
probabilistic algorithm A0 for which minx Pr[A0(x) = f (x)] = p.
The main idea is to use shared random string in order to simulate
uniform distribution.
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Optimal classical RAC

According to Yao’s principle, we can consider only deterministic
strategies. For each bit there are only four possible decoding
functions: 0, 1, x , NOT x .

Optimal decoding
There is an optimal classical RAC in such form that:

trivial decoding strategies 0 and 1 are not used for any bits,
decoding strategy NOT x is not used for any bit,
Bob says the received bit no matter which bit is asked.

Optimal encoding
Encode the majority of bits.
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Exact probability of success

p(2m) =
1

2m · 22m
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Magic formula
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Final formula

p(2m) = p(2m + 1) =
1
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Bounds for the probability of success

Exact probability p(2m) = p(2m + 1) = 1
2 +

(2m
m
)
/22m+1.
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Bounds for the probability of success

Using Stirling’s approximation we get p(n) = 1
2 + 1/

√
2πn.
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Bounds for the probability of success

Using inequalities
√

2πn
(n

e
)n e

1
12n+1 < n! <

√
2πn

(n
e
)n e 1

12n .
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Optimal quantum encoding

Let ~vi be the measurement for the i-th bit and ~rx be the encoding
of string x ∈ {0, 1}n. The average success probability is given by

p =
1

2nn
∑

x∈{0,1}n

n∑
i=1

1 + (−1)xi~vi ·~rx
2 .

In order to maximize the average probability, we must consider

max
{~vi},{~rx}

∑
x∈{0,1}n

~rx

n∑
i=1

(−1)xi~vi = max
{~vi}

∑
x∈{0,1}n

∥∥∥∥∥
n∑

i=1
(−1)xi~vi

∥∥∥∥∥ .
For given measurements ~vi the optimal encoding for string x is
unit vector in direction

∑n
i=1(−1)xi~vi .

If ∀i , j : ~vi = ~vj we get optimal classical encoding.



Previous results Classical RACs QRACs

Upper bound for QRACs

Using the inequality of arithmetic and geometric means√
a · b ≤ a+b

2 we can estimate the square of the previous sum from
above:  ∑

x∈{0,1}n

∥∥∥∥∥
n∑

i=1
(−1)xi~vi

∥∥∥∥∥
2

≤ n · 22n

and afterwards easily gain upper bound for average success
probability:

p(n) ≤ 1
2 +

1
2
√

n
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Lower bound for QRACs

Suppose that in each round Alice and Bob use the shared random
string to agree on some random measurements ~vi and the
corresponding optimal encoding vectors ~rx . To find the average
success probability we must consider this expectation

E
{~vi}

 ∑
x∈{0,1}n

∥∥∥∥∥
n∑

i=1
(−1)xi~vi

∥∥∥∥∥
 = 2n · E

{~vi}

(∥∥∥∥∥
n∑

i=1
~vi

∥∥∥∥∥
)
.

This problem is equivalent to problem of finding the average
distance traveled after n unit steps where the direction of each
step is chosen at random.
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Random walk

Chandrasekhar gives the probability density to arrive at point ~R
after performing n � 1 steps of random walk:

W (~R) =

(
3

2πn

)3/2
e−3‖~R‖2

/2n.

Therefore the average distance traveled will be:∫ ∞

0
4πR2 · R ·W (R) · dR = 2

√
2n
3π .

It gives the expected success probability if measurements are
chosen at random:

p(n) =
1
2 +

√
2

3πn .
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All bounds



Previous results Classical RACs QRACs

Some QRACs obtained by numerical optimization

http://home.lanet.lv/∼sd20008/RAC/RACs.htm
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Thanks
Great thanks goes to Andris and Debbie!
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